Contoh kasus kejadian untuk membedakan permutasi dan kombinasi

1. Diketahui persamaan, yaitu 7 = 3x - 2y Tentukan gradien dan gambarkan grafiknya? 2. Diketahui persamaan, yaitu 2x - 5y = 8 Tentukan gradien dan gam … barkan grafiknya? TOLONG JAWAB CEPATNYA YA dan tolong dijawabnya menggunakan cara, makasih

Date: tentukanlah sistem persamaan berikut kedalam metode Gauss jordan 2x +5y + 7z=3 3x - 4y + z = = -13 5x-y-8z = 30​

Tersedia angka 3, 4, 5, 7, 8, dan 9 akan dibuat bilangin yang terdiri dari 3 angka berbeda dan membentuk bilangan genap. Tentukan banyaknya bilangan y … ang tersusun !​

Jika setiap sisi persegi adalah 25,5 cm tentukan a.keliling lingkaran (cm) b.setiap 90° (keliling Lingkaran) berapa cm?

tentukan himpunan penyelesaian dam nilai x+y+z dari sistem persamaan linear 2x + 2y + 3z = 143x – y + 4z = 85x + y + 2z = 12 denganmetode eliminasi ​

9. Himpunan Penyelesaian dari persamaan |2x - 10| = 3x adalah... A. {-13,4} \ B. {-10,2} ६ C. {10,2} E. {8,1} D. {13,-4}​

9. Himpunan Penyelesaian dari persamaan |2x - 10| = 3x adalah... A. {-13,4} B. {-10,2} C. {10,2} E. {8,1} D. {13,-4}​

soalnya di gambar..mmohon bantuannya, terimakasihh​...

kak tolong bantu saya kak matematika ekonomi slide 19, slide 21, slide 24, slide 27, slide30, slide 32 semoga membantu dan manfaat tugas saya kak than … k you sudah bantu saya

tolong ya sampeno 1-5​

         Blog Koma - Bagi teman-teman yang sedang mempelajari materi Peluang atau sedang mengerjakan soal-soal yang berkaitan dengan kaidah pencacahan, tentu akan sedikit bingung apakah soal tersebut akan dikerjakan dengan menggunakan Permutasi atau Kombinasi. Untuk dapat membedakannya dengan mudah, maka pada artikel kali ini kita akan membahas tentang Apa Bedanya Permutasi dan Kombinasi pada Peluang.


         Sebelum belajar tentang peluang, kita harus menguasai dulu yang namanya "kaidah pencacahan". Kaidah pencacahan adalah teknik menentukan banyaknya susunan atau cara pada suatu kejadian atau percobaan. Kaidah pencacahan terdiri dari "aturan perkalian dan aturan penjumlahan", permutasi dan kombinasi. Berikut akan dibahas perbedaan permutasi dan kombinasi secara singkat sehingga mudah-mudahan bisa mengatasi kebingungan yang selama ini terjadi.

Perbedaan Permutasi dan Kombinasi

       Berikut perbedaan mendasar antara permutasi dan kombinasi yaitu :

*). Permutasi adalah cara penyusunan suatu unsur pada suatu kejadian atau percobaan yang memperhatikan "URUTAN".

Lambang permutasi : $ P_k^n \, $ atau $ \, _nP_k \, $ atau $ \, P(n,k) $ Rumus permutasi : $ P_k^n = \frac{n!}{(n-k)!} $

*). Kombinasi adalah cara penyusunan suatu unsur pada suatu kejadian atau percobaan yang TIDAK memperhatikan URUTAN.

Lambang kombinasi : $ C_k^n \, $ atau $ \, _nC_k \, $ atau $ \, P(n,k) \, $ atau $ \, \left( \begin{matrix} n \\ k \end{matrix} \right) $ Rumus Kombinasi : $ C_k^n = \frac{n!}{(n-k)!. k!} $ Catatan : *). Untuk memudahkan dalam mengingat manakah yang memperhatikan URUTAN dan mana yang TIDAK, yaitu diantara kata permUtasi dan kombinasi manakah yang menggunakan huruf "U" (huruf U mewakili kata URUTAN). Ternyata kata permUtasi yang menggunakan huruf U, sehingga permutasilah yang memperhatikan URUTAN.

*). Kombinasi hasilnya lebih sedikit dengan permutasi.

Untuk lebih memahami perbedaan permutasi dan kombinasi terutama apa yang dimaksud dengan memperhatikan URUTAN atau TIDAK, perhatikan contoh soal berikut ini.Namun sebelumnya juga pelajar

materi yang berkaitan dengan faktorial pada artikel "aturan perkalian dan penjumlahan"

Contoh soal-soal perbedaan permutasi dan kombinasi: 1). Ada 5 orang kemudian akan dipilih 3 orang dari 5 orang tersebut. Tentukan banyak cara pemilihan yang mungkin jika a). 3 orang tersebut dipilih untuk menjadi pengurus organisasi yaitu ketua, wakil, dan bendahara. b). 3 orang tersebut dipilih untuk mewakili sebuah tim dalam perlombaan. Penyelesaian : *). Ada lima orang, misalkan orang tersebut adalah A, B, C, D, dan E. *). Akan dipilih 3 orang dari 5 orang tersebut. a). 3 orang tersebut dipilih untuk menjadi pengurus organisasi yaitu ketua, wakil, dan bendahara. Kita akan cek, apakah pada kasus (a) ini memperhatikan URUTAN atau TIDAK. Misalkan 3 orang yang terpilih adalah A, B, dan D. Susunan kepengurusan dari A, B, dan D yaitu : susunan I : A menjadi Ketua, B menjadi wakil, dan D menjadi bendahara atau disingkat ABD. susunan II : B menjadi Ketua, A menjadi wakil, dan D menjadi bendahara atau disingkat BAD. Susunan I dan susunan II dari kepengurusan dianggap berbeda karena pada susunan I ketuanya A dan susunan II ketuanya B sehingga pasti berbeda, artinya ABD tidak sama dengan BAD (ABD $\neq $ BAD). Ini artinya URUTAN diperhatikan pada kasus ini, sehingga kita menggunakan PERMUTASI untuk menyelesaikannya. *). Menentukan banyak cara yang mungkin. Kita memilih 3 orang dari 5 orang, banyak cara yaitu : $ \begin{align} P_3^5 = \frac{5!}{(5-3)!} = \frac{5!}{2!} = \frac{5.4.3.2.1}{2.1} = 60 \end{align} \, $ cara. Jadi, ada 60 cara pemilihan untuk kasus (a). b). 3 orang tersebut dipilih untuk mewakili sebuah tim dalam perlombaan. Kita akan cek, apakah pada kasus (b) ini memperhatikan URUTAN atau TIDAK. Misalkan 3 orang yang terpilih adalah A, B, dan D. Maka urutan terpilihnya yaitu : ABD, ADB, BAD, BDA, DAB, dan DBA. Bentuk I : ABD artinya yang terpilih adalah A, B, dan D. Bentuk II : ADB artinya yang terpilih adalah A, D, dan B. Karena hanya sebagai sebuah tim, maka bentuk ABD dan ADB sama saja yaitu yang terpilih A,B, dan D sebagai sebuah tim. Ini artinya URUTAN tidak diperhatikan ( ABD sama saja dengan ADB ), sehingga kasus (b) ini adalah kasus KOMBINASI yang tidak memperhatikan urutan. *). Menentukan banyak cara yang mungkin. Kita memilih 3 orang dari 5 orang, banyak cara yaitu : $ \begin{align} C_3^5 = \frac{5!}{(5-3)!3!} = \frac{5!}{2!3!} = \frac{5.4.3!}{(2.1).3!} = 10 \end{align} \, $ cara. Jadi, ada 10 cara pemilihan untuk kasus (b). 2). Misalkan ada 5 warna cat yaitu Merah, Hijau, Putih, Kuning, dan Biru. Jika 2 warna cat akan dicampurkan sehingga terbentuk warna baru, maka tentukan ada berapakah banyak warna baru yang diperoleh? Penyelesaian : *). Kita cek, apakah kasus ini memperhatikan URUTAN atau TIDAK. Misalkan kita campurkan 2 warna yaitu warna Merah dan Putih, cat warna Merah dicampur dengan cat warna Putih hasilnya akan sama pada pencampuran cat warna Putih dan warna Merah, ini artinya URUTAN pencampuran tidak berpengaruh (URUTAN tidak diperhatikan) sehingga soal ini adalah kasus KOMBINASI. *). Menentukan banyak warna baru : Kita memilih 2 warna cat dari 5 warna yang ada, banyak cara yaitu : $ \begin{align} C_2^5 = \frac{5!}{(5-2)!2!} = \frac{5!}{3!2!} = \frac{5.4.3!}{3!.(2.1)} = 10 \end{align} \, $ cara. Jadi, ada 10 warna baru yang akan kita peroleh setelah mencampurkan dua warna dari 5 warna yang ada. Catatan : Untuk lebih mendalam tentang materi permutasi dan kombinasi, silahkan baca materinya dengan klik link yang ada di bawah ini.

*). Materi permutasi pada artikel "Permutasi pada Peluang"


*). Materi kombinasi pada artikel "kombinasi pada Peluang"

Permutasi dan Kombinasi adalah dua istilah yang berbeda yang digunakan dalam matematika, statistik, penelitian, dan kehidupan sehari – hari kita. Namun ada perbedaan permutasi dan kombinasi tersebut.

Perbedaan antara permutasi dan kombinasi paling mendasar adalah di urutan objek. Jika perutasi itu memperhatikan urutan sedangkan kombinasi tidak memperhatikan urutan.

Pengertian Permutasi dan Kombinasi

1. Permutasi

Permutasi adalah cara penyusunan suatu unsur pada suatu kejadian atau percobaan yang memperhatikan urutan.

Rumus permutasi :

Contoh :

Akan dibentuk sebuah susunan panitia untuk mensukseskan sebuah acara yang terdiri dari ketua, wakil ketua, sekretaris, bendahara, dan pembantu umum. Dari banyak orang akan dipilih 10 orang saja berdasarkan kriteria tertentu. Berapakah susunan panitia yang dapat dibentuk?

Jawab :

Karena permutasi memperhatikan urutan maka susunan panitia untuk sebuah acara tersebut harus urut mulai dari ketua panitia, wakil ketua panitia, sekretaris, bendahara, lalu pembantu umumnya.

2. Kombinasi

Kombinasi adalah cara penyusunan suatu unsur pada suatu kejadian atau percobaan yang tidak memperhatikan urutan.

Rumus kombinasi :

Contoh :

Terdapat 5 baju atasan, 7 celana, dan 3 jilbab. Dari barang – barang tersebut akan dipilih 2 baju atasan, 5 celana, dan 2 jilbab untuk disumbangkan ke anak jalanan. Berapakah banyaknya cara yang bisa dilakukan untuk memilih barang yang akan disumbangkan tersebut?

Jawab :

Karena kombinasi tidak memperhatikan urutan maka pemilihan barang yang akan disumbangkan tersebut dapat banyak sekali caranya. Mulai dari memilih salah satu baju atasan, celana, dan jilbab, atau dapat dibalik. Intinya kombinasi tidak memperhatikan urutan.

Baca juga: Perbedaan Spermatogenesis dan Oogenesis

Perbedaan Permutasi dan Kombinasi

Perbedaan Permutasi dan Kombinasi telah kami rangkumkan dalam tabel berikut ini.

Perbedaan Permutasi dan Kombinasi
PembedaPermutasiKombinasi
PengertianPermutasi adalah cara penyusunan suatu unsur pada suatu kejadian atau percobaan yang memperhatikan urutan.Kombinasi adalah cara penyusunan suatu unsur pada suatu kejadian atau percobaan yang tidak memperhatikan urutan.
UrutanRelevanTidak relevan
Apa itu?Elemen yang tersusun.Elemen yang tidak tersusun.
MenunjukSusunanSeleksi
MenjawabBerapa banyak susunan yang berbeda dan dapat dibuat dari sekumpulan benda tertentu?Berapa banyak kelompok yang berbeda dan dapat dipilih dari kelompok objek yang lebih besar?
TurunanBeberapa permutasi dari kombinasi tunggal.Kombinasi tunggal dari permutasi tunggal.
Mengacu padaPermutasi mengacu pada beberapa cara untuk mengatur satu set objek secara berurutan.Kombinasi mengacu pada beberapa cara untuk memilih item dari kumpulan objek yang besar, sehingga urutannya tidak relevan.

Jadi itulah perbedaan permutasi dan kombinasi yang dapat kami sampaikan beserta contohnya. Semoga anda dapat mencerna apa yang telah kami jelaskan dan mendapat tambahan ilmu.

Jika ada kesalahan dalam materi maupun penulisan kami mohon kritik dan sarannya di kolom komentar supaya kami dapat lebih baik lagi. Terima kasih 🙂